Deep Neural Network Approximation using Tensor Sketching

نویسندگان

  • Shiva Prasad Kasiviswanathan
  • Nina Narodytska
  • Hongxia Jin
چکیده

Deep neural networks are powerful learning models that achieve state-of-the-art performance on many computer vision, speech, and language processing tasks. In this paper, we study a fundamental question that arises when designing deep network architectures: Given a target network architecture can we design a “smaller” network architecture that “approximates” the operation of the target network? The question is, in part, motivated by the challenge of parameter reduction (compression) in modern deep neural networks, as the ever increasing storage and memory requirements of these networks pose a problem in resource constrained environments. In this work, we focus on deep convolutional neural network architectures, and propose a novel randomized tensor sketching technique that we utilize to develop a unified framework for approximating the operation of both the convolutional and fully connected layers. By applying the sketching technique along different tensor dimensions, we design changes to the convolutional and fully connected layers that substantially reduce the number of effective parameters in a network. We show that the resulting smaller network can be trained directly, and has a classification accuracy that is comparable to the original network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion

In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...

متن کامل

INFLUENCE OF FIBER ASPECT RATIO ON SHEAR CAPACITY OF DEEP BEAMS USING ARTIFICIAL NEURAL NETWORK TECHNIQUE

This paper deals with the effect of fiber aspect ratio of steel fibers on shear strength of steel fiber reinforced concrete deep beams loaded with shear span to depth ratio less than two using the artificial neural network technique. The network model predicts reasonably good results when compared with the equation proposed by previous researchers. The parametric study invol...

متن کامل

STRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM

Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...

متن کامل

Faster SGD Using Sketched Conditioning

We propose a novel method for speeding up stochastic optimization algorithms via sketching methods, which recently became a powerful tool for accelerating algorithms for numerical linear algebra. We revisit the method of conditioning for accelerating first-order methods and suggest the use of sketching methods for constructing a cheap conditioner that attains a significant speedup with respect ...

متن کامل

The Optimization of Forecasting ATMs Cash Demand of Iran Banking Network Using LSTM Deep Recursive Neural Network

One of the problems of the banking system is cash demand forecasting for ATMs (Automated Teller Machine). The correct prediction can lead to the profitability of the banking system for the following reasons and it will satisfy the customers of this banking system. Accuracy in this prediction are the main goal of this research. If an ATM faces a shortage of cash, it will face the decline of bank...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.07850  شماره 

صفحات  -

تاریخ انتشار 2017